Enantioselective conversion of meso-cyclic disulfides to chiral cyclic sulfides via desulfurization with chiral aminophosphines

Yoshihiro Miyake, Hiroya Takada, Kouichi Ohe * and Sakae Uemura*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received (in Cambridge, UK) 11th January 2000, Accepted 4th April 2000
Published on the Web 28th April 2000

Enantioselective desymmetrization of meso-cyclic disulfides has been investigated on the basis of the desulfurization with chiral phosphines. Chiral tert-aminophosphines enable the desulfurization of a sixmembered disulfide, cis-3,6-bis(alkoxycarbonyl)-1,2-dithiane 2, to give an enantiomerically enriched five-membered sulfide, trans-2,5-bis(alkoxycarbonyl)thiolane 5, with up to 36% ee. The desulfurization of a seven-membered disulfide, cis-3,7-bis(alkoxycarbonyl)-1,2-dithiepane 3 , with chiral aminophosphines also gives a six-membered sulfide, trans-2,6-bis(alkoxycarbonyl)thiane 6, with up to 30% ee.

Introduction

Enantioselective desymmetrization of σ-symmetric mesocompounds is an attractive and challenging subject in asymmetric synthesis. ${ }^{1}$ A number of enantiodifferentiation methodologies have been developed so far. meso-Compounds, such as meso-1, n-diols ($n=2-4$), meso-1,2-diesters, and mesoepoxides, have been mainly examined using enzymic ${ }^{2}$ and chemical ${ }^{1,3}$ methods to demonstrate the validity of this concept and its application in targeted syntheses of chiral molecules. We report herein the enantioselective desymmetrization of mesocyclic disulfides which have not so far been dealt with in the enantioselective desymmetrization of meso-compounds. Harpp et al. reported the stereospecific desulfurization of cis- and trans-3,6-bis(methoxycarbonyl)-1,2-dithiane with a tris(dialkylamino)phosphine to produce trans- and cis-2,5bis(methoxycarbonyl)thiolane, respectively (Scheme 1). ${ }^{4}$ The

Scheme 1
desulfurization has been proposed to proceed in an $S_{\mathrm{N}} 2$ fashion involving the heterolytic cleavage of an S-S bond of disulfide \mathbf{S} with the aminophosphine followed by an intramolecular nucleophilic substitution in the phosphonium intermediate \mathbf{T}. This work stimulated us to investigate the enantioselective desulfurization of meso-cyclic disulfides. Thus, in σ-symmetric cyclic disulfides (1-3) the effective discrimination of two sulfurs to be eliminated with a chiral phosphorus reagent such as 7,8 or $\mathbf{9}$ might be expected to give chiral cyclic sulfides (Scheme 2). This transformation can also provide a viable route to chiral sulfides with C_{2}-symmetry. Recently, C_{2}-symmetric thiolanes have attracted a great deal of interest in asymmetric syntheses,

Scheme 2
since they have so far been prepared by the transformation of chiral precursors or, otherwise, by resolution of racemic substrates. ${ }^{5}$

Results and discussion

First, the desulfurization of five-membered cis-3,5-bis(alkoxy-carbonyl)-1,2-dithiolanes $\mathbf{1}$ with aminophosphines was attempted. Prior to asymmetric application the reaction with achiral hexamethylphosphorus triamide (HMPT) was carried out. Reaction of cis-3,5-bis(isopropoxycarbonyl)-1,2-dithiolane $\mathbf{1 b}(0.2 \mathrm{mmol})$ with HMPT $(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at room temperature for 24 h afforded trans-1,2-bis(isopropoxycarbonyl)cyclopropane 10b in 44% yield in place of the expected trans-2,4-bis(isopropoxycarbonyl)thietane 4b [equation (1)]. This result indicated that $\mathbf{1 b}$ is prone to eliminate two sulfur atoms via two desulfurization steps as shown in equation (1). On the other hand, when HMPT was slowly

J. Chem. Soc., Perkin Trans. 1, 2000, 1595-1599

Table 1 Asymmetric desulfurization of cis-3,6-bis(alkoxycarbonyl)-1,2-dithianes $\mathbf{2}^{a}$ and cis-3,7-bis(alkoxycarbonyl)-1,2-dithiepanes $\mathbf{3}^{b}$

Entry	Disulfide	Phosphine	Solvent	t / h	Product		
						(\%) ${ }^{\text {c }}$	$\mathrm{Ee}(\%)^{d}$
1	2a	7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	6	5a	95	2
2		7	THF	24		88	12
3		7	$\mathrm{C}_{6} \mathrm{H}_{12}$	96		26	36
$4{ }^{e}$		7	$\mathrm{C}_{6} \mathrm{H}_{12}$	48		52	2
$5{ }^{\text {f }}$		7	$\mathrm{C}_{6} \mathrm{H}_{12}$	96		78	19
6		8	$\mathrm{C}_{6} \mathrm{H}_{12}$	96		37	11
7		9	$\mathrm{C}_{6} \mathrm{H}_{12}$	96		37	15
8	2b	7	$\mathrm{C}_{6} \mathrm{H}_{12}$	96	5b	8	15
9	3a	7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	6 a	38	21
10^{g}		7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60		58	13
11		7	DMA	85		52	15
12		7	$\mathrm{Pr}^{\text {i }} \mathrm{OH}$	25		53	3
13^{f}		7	$\mathrm{C}_{6} \mathrm{H}_{12}$	96		25	30
14		8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48		39	14
15		9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48		38	7
16	3b	7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	6b	42	15

${ }^{a}$ Conditions: $\mathbf{2}(0.2 \mathrm{mmol})$, phosphine (0.2 mmol), solvent (2 ml), and at room temperature unless otherwise noted. ${ }^{b}$ Conditions: $\mathbf{3}$ (0.2 mmol), phosphine (0.2 mmol), solvent (0.2 ml), and at room temperature unless otherwise noted. ${ }^{c}$ Isolated yields. ${ }^{d}$ Enantiomeric excess determined by HPLC equipped with chiral columns. ${ }^{e}$ At reflux temperature. ${ }^{f}$ MS4A was used. ${ }^{g}$ At $0{ }^{\circ} \mathrm{C}$.
added to the solution of $\mathbf{1 b}$ over 12 h using a syringe pump, the expected thietane $\mathbf{4 b}$ was mainly produced in 27% yield [equation (2)]. Attempted enantioselective reaction of $\mathbf{1 b}$ with a

chiral aminophosphine 7^{6} was, however, in vain under such slow-addition conditions, giving only a trace amount of $\mathbf{4 b}$.

Next, we examined the enantioselective desulfurization of six- and seven-membered disulfides $\mathbf{2}$ and $\mathbf{3}$ to obtain enantiomerically enriched thiolane 5 and thiane 6. Results under different conditions are summarized in Table 1. The reaction of cis-3,6-bis(alkoxycarbonyl)dithianes 2 with chiral aminophosphines was expected to give the C_{2}-symmetric trans-2,5bis(alkoxycarbonyl)thiolane 5 . The reaction of $\mathbf{2 a}(0.2 \mathrm{mmol})$ with $7(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at room temperature for 6 h produced thiolane 5 a quantitatively, but no asymmetric induction occurred (entry 1). The same reaction in THF gave 5a in 88% yield with 12% ee (entry 2). The highest enantiomeric excess (36% ee) was observed when the reaction was carried out in cyclohexane at room temperature (entry 3). Reflux conditions were not effective for asymmetric induction (2% ee) (entry 4). The addition of MS4A (molecular sieves, $4 \AA$) accelerated the reaction of $\mathbf{2 a}$ in cyclohexane to give a higher chemical yield of 5a, but it did not improve the enantioselectivity (19% ee) (entry 5). Other chiral aminophosphines $\mathbf{8}$ and $\mathbf{9}$ did not show much influence on the enantioselectivity of the desulfurization of $\mathbf{2 a}$ (entries 6 and 7). The reaction of $\mathbf{2 b}$ having the sterically demanding isopropoxy group afforded $\mathbf{5 b}$ in lower chemical yield with 15% ee (entry 8).

Next, we attempted the enantioselective desulfurization of the seven-membered disulfides 3. Compared with the sixmembered disulfides 2, the desulfurization of the sevenmembered disulfides 3 required higher concentrations of both substrate and phosphine. The reaction of $\mathbf{3 a}(0.2 \mathrm{mmol})$ using chiral phosphine $7(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$ at rt for 48 h afforded thiane $\mathbf{6 a}$ in 38% yield with 21% ee (entry 9). Lower reaction temperature at $0^{\circ} \mathrm{C}$ did not improve the enantioselectivity (entry 10). N, N-Dimethylacetamide (DMA) as a solvent in place of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was also effective for the desulfurization of 3 a , providing $\mathbf{6 a}$ in 52% with 15% ee (entry 11). However, $\mathrm{Pr}^{i} \mathrm{OH}$ was not effective as a solvent for this enantioselective desulfurization of 3a, although the reaction was
accelerated (entry 12). ${ }^{7}$ No reaction took place in a less polar solvent such as cyclohexane. Interestingly, the addition of MS4A promoted the desulfurization of $\mathbf{3 a}$ in cyclohexane to give $6 \mathbf{a}$ with higher enantioselectivity (30% ee) (entry 13). The use of other aminophosphines 8 and 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ did not improve the enantioselectivity (entries 14 and 15). Higher enantioselectivity in the desulfurization of 3b having a bulky alkoxy group was expected, but the enantiomeric excess of $\mathbf{6 b}$ was at most 15% ee (entry 16).
The level of enantioselectivity of $\mathbf{5}$ and $\mathbf{6}$ was moderate (up to 36% ee), but the enantioselective desulfurization of six- and seven-membered disulfides was found to be a viable process. In the case of the seven-membered disulfides 3 the enantioselective discrimination of sulfur atoms occurred to give the enantiomerically enriched product $\mathbf{6}$. In the six-membered disulfide 2, the enantiotopic discrimination is more complicated. ${ }^{8}$ The principle of the enantiotopic discrimination of 2 can be explained by assuming the transition-state structures shown in Scheme 3. Dodson and Nelson claimed that the equilibration between two mirror-image twist structures, $P-2$ and $M-\mathbf{2}$, having

helicity denoted by P and M is established in solution. ${ }^{9}$ In the transition state of this desulfurization, four approaching directions (a-d) of a chiral aminophosphine to the S-S bond of 2 are postulated. The desulfurization of $P-2$ and $M-2$ can give rise to both stereoisomers, $(2 R, 2 R)$ - and $(2 S, 2 S)$-thiolane 5 . Approach a to $P-2$ leading to $(2 S, 2 S)-5$ might be most unfavorable due to the steric interaction between the largest group $\left(R_{\mathrm{L}}\right)$ of an aminophosphine and an alkoxycarbonyl group of $\mathbf{2}$. Approach \mathbf{d} leading to $(2 S, 2 S)-5$ might be the most favorable course. In fact, the S, S-configuration for the major enantiomer of $\mathbf{5 a}$ was determined by the plus sign of its reported optical rotation. ${ }^{10,11}$ This result supports the discrimination process for the six-membered disulfide $\mathbf{2}$ as shown in Scheme 3. ${ }^{12}$

In conclusion, we have demonstrated the asymmetric desulfurization of meso-cyclic disulfides with chiral phosphines. Although a high level of ee has not yet been attained, this reaction represents a unique meso-trick involving the configurational inversion of a stereogenic center of the substrate.

Experimental

General

All reactions were performed in oven-dried or flame-dried glassware under an atmosphere of dry Ar or N_{2} unless otherwise noted. Solvents and chemicals were obtained commercially and purified by standard procedures. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 270 or 400 MHz FT-NMR spectrometer, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 67.5 or 100 MHz FT-NMR spectrometer. Chemical shifts are reported in ppm relative to TMS in the solvents specified. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift in $\mathrm{ppm}\left(\delta_{\mathrm{H}}\right)$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{c}=$ complex), coupling constant (Hz), relative intensity, and interpretation. ${ }^{13} \mathrm{C}$ NMR data are reported as follows: chemical shift in ppm (δ_{C}) and interpretation. High-resolution mass spectra (HRMS) were obtained with a JEOL JMS-SX102A spectrometer. Mps were measured on a Yanaco MP-J3 micro-melting-point apparatus and are uncorrected. Analytical TLC was performed with silica gel 60 Merck F- 254 plates. Column chromatography on SiO_{2} was performed with Merck silica gel 60. HPLC analyses were performed on a Hitachi L-7000 instrument using Daicel Chiralcel OD and AD columns at $30^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$. Elemental analyses were performed at the Microanalytical Center of Kyoto University. meso-Cyclic disulfides $\mathbf{2 a}{ }^{4}$ and chiral diazaphospholidines $7-\mathbf{9}^{6}$ were prepared by the reported methods.

Preparation of cis-3,5-bis(methoxycarbonyl)-1,2-dithiolane 1a

meso- α, α^{\prime}-Dibromoglutaric acid was prepared by the reported method. ${ }^{13}$ To a green solution of $\mathrm{Na}_{2} \mathrm{~S}(0.234 \mathrm{~g}, 3.0 \mathrm{mmol})$ and sulfur powder ($0.096 \mathrm{~g}, 3.0 \mathrm{mmol}$) in DMF (10 ml) was added a solution of dimethyl α, α^{\prime}-dibromoglutarate $(0.645 \mathrm{~g}, 2 \mathrm{mmol})$ in DMF (1 ml) at $0^{\circ} \mathrm{C}$. After the exothermic reaction had subsided, the reaction mixture was stirred for 4 h at room temperature. The mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The ether layer was dried over MgSO_{4} and concentrated under vacuum. The yellow oil was subjected to column chromatography on SiO_{2} with hexaneEtOAc (5:1) as eluent to give a mixture of trans- and cis-3,5-bis(methoxycarbonyl)-1,2-dithiolane ($0.206 \mathrm{~g}, 46 \%$). cis-3,5-Bis(methoxycarbonyl)-1,2-dithiolane 1a was isolated in pure form by HPLC with CHCl_{3} eluent as a yellow oil; $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 1732(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.77(\mathrm{t}, J 5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 6 \mathrm{H}), 4.40(\mathrm{t}, J 5.4 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 38.0$ $\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{3}\right), 54.3(\mathrm{SCH}), 171.1(\mathrm{CO}) ; m / z$ EIMS 222 $\left(\mathrm{M}^{+}\right)$[HRMS (EI): Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}: 222.0020$. Found: m / z, 222.0027] (Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 37.83 ; \mathrm{H}, 4.53 ; \mathrm{S}, 28.85$. Found: C, 38.35 ; H, 4.58 ; S, 28.48%).

Preparation of cis-3,7-bis(methoxycarbonyl)-1,2-dithiepane 3a

meso- α, α^{\prime}-Dimercaptopimelic acid was prepared by the reported method. ${ }^{13}$ Dry HCl gas (dried in a conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ tower) was passed through a suspension of meso- α, α^{\prime}-dimercaptopimelic acid ($7.34 \mathrm{~g}, 33 \mathrm{mmol}$) in methanol (550 ml) with stirring at $0^{\circ} \mathrm{C}$ for 2.5 h . The methanol was removed under vacuum, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added, and the solution was dried over MgSO_{4}. The solvent was evaporated to give dimethyl meso- α, α^{\prime}-dimercaptopimelate ($5.67 \mathrm{~g}, 22 \mathrm{mmol}, 66 \%$ yield) as a yellow oil. A saturated solution of iodine in chloroform was added dropwise to a solution of dimethyl meso- α, α^{\prime} dimercaptopimelate ($5.67 \mathrm{~g}, 22 \mathrm{mmol}$) and triethylamine (5.7 $\mathrm{ml}, 41 \mathrm{mmol}$) in chloroform (150 ml) until a slight excess of I_{2} was evidenced by its color. The solution was washed successively with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and dil. HCl , and then dried over MgSO_{4}. The solvent was evaporated under reduced pressure to give a brown oil, which was subjected to column chromatography on SiO_{2} with hexane-diethyl ether (1:1) as eluent to give cis-3,7-bis(methoxycarbonyl)-1,2-dithiepane 3a ($2.95 \mathrm{~g}, 55 \%$ yield) as a colorless oil; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1731$ (CO); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.89-2.35(\mathrm{~m}, 6 \mathrm{H}), 3.51-3.56(\mathrm{~m}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $23.9\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{3}\right), 54.4(\mathrm{SCH}), 171.7(\mathrm{CO})$ (Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 43.18; H, 5.64; S, 25.61. Found: C, 43.10; H, 5.63; S, 25.65\%).

Preparation of cis-bis(isopropoxycarbonyl)-1,2-dithiacycloalkanes 1b-3b ${ }^{14}$

To a solution of a methyl ester $\mathbf{1 a}-\mathbf{3 a}(1.3 \mathrm{mmol})$ and propan-2ol (7.1 ml) was added tetraisopropyl titanate ($40 \mu \mathrm{l}, 0.13 \mathrm{mmol}$) under nitrogen. The mixture was stirred at reflux temperature for 5 h . After the removal of the produced methanol in vacuo, the oily residue was dissolved in propan-2-ol $(7.1 \mathrm{ml})$ and the mixture was refluxed for 5 h . The solvent was removed and the resultant yellow oil was dissolved in diethyl ether (5 ml). Water $(5 \mathrm{ml})$ was added to the mixture, which was stirred for 10 min . The resulting mixture was extracted with diethyl ether ($3 \times$ 30 ml) and the extract was dried over MgSO_{4}. The solvent was removed under reduced pressure to give a pale yellow oil. Purification by silica gel column chromatography with hexane-EtOAc (5:1) as eluent gave the corresponding isopropyl ester.
cis-3,5-Bis(isopropoxycarbonyl)-1,2-dithiolane 1b. A yellow oil (42%); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1735(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27$ $(\mathrm{d}, J 6.3 \mathrm{~Hz}, 12 \mathrm{H}), 2.73(\mathrm{t}, J 5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J 5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.04 (sept, $J 6.3 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5\left(\mathrm{CH}_{3}\right), 21.7$ $\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{SCH}), 69.5(\mathrm{OCH}), 170.1(\mathrm{CO})$ (Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 47.46 ; \mathrm{H}, 6.52 ; \mathrm{S}, 23.03$. Found: C, 47.86; H, 6.73; S, 23.03\%).
cis-3,6-Bis(isopropoxycarbonyl)-1,2-dithiane 2b. A white solid (83%) ; mp $59-61{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1711(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.20(\mathrm{~d}, J 6.31 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J 6.31 \mathrm{~Hz}, 6 \mathrm{H}), 2.09-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.54(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{tt}$, $J 6.31,6.31 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5\left(\mathrm{CH}_{3}\right), 21.6$ $\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 45.7(\mathrm{SCH}), 69.1(\mathrm{OCH}), 169.5(\mathrm{CO})($ Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 49.29; H, 6.89; S, 21.93. Found: C, 49.13; H, 6.84; S, 21.85\%).
cis-3,7-Bis(isopropoxycarbonyl)-1,2-dithiepane 3b. A colorless oil (65%); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1731$ (CO); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $1.24(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.29-2.50(\mathrm{~m}, 6 \mathrm{H})$, $3.43-3.49(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{tt}, J 6.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 21.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2} \mathrm{CHS}\right), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 55.1(\mathrm{SCH}), 68.7(\mathrm{OCH}), 170.6(\mathrm{CO})($ Calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 50.95 ; \mathrm{H}, 7.24 ; \mathrm{S}, 20.92$. Found: C, 50.94; H, 7.30; S, 20.67\%).

Desulfurization of 1b with HMPT

To a solution of $\mathbf{1 b}(55.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added HMPT $(40.0 \mu \mathrm{l}, 0.22 \mathrm{mmol})$ at room temperature and the mixture was stirred for 24 h . The solvent was removed under vacuum. Purification by silica gel column chromatography with hexane-EtOAc (20:1) as eluent gave trans-1,2-bis(isopropoxycarbonyl)cyclopropane 10 b ($18.9 \mathrm{mg}, 44 \%$) as a colorless oil; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24(\mathrm{~d}, J 6.3 \mathrm{~Hz}, 12 \mathrm{H}), 1.36-1.41(\mathrm{c}, 2 \mathrm{H})$, 2.08-2.13 (c, 2H), 4.99 (sept, J $6.3 \mathrm{~Hz}, 2 \mathrm{H}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 15.3\left(\mathrm{CHCH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 68.5(\mathrm{OCH})$, 171.3 (CO); m/z EIMS $215(\mathrm{M}+\mathrm{H})$ [HRMS (EI): Calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4}: 215.1283$. Found: $\left.m / z, 215.1291\right]$.

Desulfurization of 1b with HMPT using a syringe pump

To a stirred solution of $\mathbf{1 b}(55.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ was added HMPT $(40.0 \mu \mathrm{l}, 0.22 \mathrm{mmol})$ at room temperature over a period of 12 h using a syringe pump. The solvent was evaporated under vacuum to give a yellow liquid. Purification by silica gel column chromatography with hexane$\mathrm{EtOAc}(40: 1)$ as eluent gave trans-2,4-bis(isopropoxycarbonyl)thietane $\mathbf{4 b}(13.3 \mathrm{mg}, 27 \%)$ as a yellow oil; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.256(\mathrm{~d}, J 6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.262(\mathrm{~d}, J 6.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.25(\mathrm{t}, J 7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.05(\mathrm{~d}, J 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.06$ (sept, $J 6.4 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.6\left(\mathrm{CHCH}_{3}\right), 21.7\left(\mathrm{CHCH}_{3}\right), 30.2\left(\mathrm{CH}_{2}\right), 35.3$ $(\mathrm{SCH}), 69.1(\mathrm{OCH}), 172.5(\mathrm{CO}) ; \mathrm{m} / \mathrm{z}$ FABMS $247(\mathrm{M}+\mathrm{H})$ [HRMS (FAB): Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}: 247.1004$. Found: m / z, 247.1004].

General procedure for asymmetric desulfurization of meso-cyclic disulfides

A solution of chiral phosphorus compound $(0.2 \mathrm{mmol})$ and the meso-cyclic disulfide $(0.2 \mathrm{mmol})$ in a solvent $(0.2-2 \mathrm{ml})$ was stirred under nitrogen at room temperature. After the reaction was complete, evaporation of the solvent left a pale yellow oil Purification by silica gel chromatography gave the corresponding cyclic monosulfide in pure form. Enantiomeric excesses were determined by HPLC using a suitable chiral column.
trans-2,5-Bis(methoxycarbonyl)thiolane $5 \mathrm{a} \mathbf{.}^{4,10} \mathrm{~A}$ colorless oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1736(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.26-2.42(\mathrm{~m}$, $4 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 4.05-4.09(\mathrm{~m}, 2 \mathrm{H})$; ee was determined by Daicel Chiralcel OD; $40^{\circ} \mathrm{C} ; 1.0 \mathrm{ml} \mathrm{min}{ }^{-1}$, hexane-propan-2-ol ($80: 20$); $(R, R) t_{1}=4.70 \mathrm{~min},(S, S) t_{2}=5.36 \mathrm{~min}$.
trans-2,5-Bis(isopropoxycarbonyl)thiolane 5b. A white solid; $\mathrm{mp} 51-52{ }^{\circ} \mathrm{C}$; ee was determined by Daicel Chiralpak AD; $30^{\circ} \mathrm{C} ; 0.2 \mathrm{ml} \mathrm{min}{ }^{-1}$, hexane-methanol (200:1); $t_{1}=34.23 \mathrm{~min}$, $t_{2}=45.06 \mathrm{~min} ; \quad v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1727 \quad(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.24(\mathrm{~d}, J 6.32 \mathrm{~Hz}, 12 \mathrm{H}), 2.25-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.99$ $(\mathrm{m}, 2 \mathrm{H}), 5.00(\mathrm{sept}, J 6.32 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5$ $\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right), 48.8(\mathrm{SCH}), 68.7(\mathrm{OCH}), 172.4$ (CO) (Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 55.36 ; \mathrm{H}, 7.74 ; \mathrm{S}, 12.31$. Found: C, 55.09 ; H, 7.78; S, 12.32\%).
trans-2,6-Bis(methoxycarbonyl)thiane 6a. Ee was determined by Daicel Chiralcel OD; $40^{\circ} \mathrm{C} ; 0.5 \mathrm{ml} \mathrm{min}{ }^{-1}$, hexane-propan-2ol (91:9); $t_{1}=11.80 \mathrm{~min}, t_{2}=14.26 \mathrm{~min} ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1732$ (CO); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.82-2.69(\mathrm{~m}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, 3.81 (dd, $J 3.98,7.01 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 41.5(\mathrm{SCH}), 52.2\left(\mathrm{CH}_{3}\right), 172.3$ (CO) (Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$: C, 49.53; H, 6.46; S, 14.69. Found: C, 49.17; H, 6.42; S, 15.30\%).
trans-2,6-Bis(isopropoxycarbonyl)thiane 6b. Ee was determined by Daicel Chiralcel OD; $30^{\circ} \mathrm{C} ; 0.1 \mathrm{ml} \mathrm{min}{ }^{-1}$, hexane-tert-butyl methyl ether (92:8); $t_{1}=104.46 \mathrm{~min}, t_{2}=112.98 \mathrm{~min}$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1727(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(\mathrm{~d}, J 6.23$ $\mathrm{Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J 6.23 \mathrm{~Hz}, 6 \mathrm{H}), 1.80-2.08(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{dd}$,
$J 3.98,7.28 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{tt}, J 6.23,6.23 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}(67.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 21.67\left(\mathrm{CH}_{3}\right), 21.72\left(\mathrm{CH}_{3}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 41.9(\mathrm{SCH}), 68.8(\mathrm{OCH}), 171.6(\mathrm{CO})(\mathrm{Calc}$. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 56.91 ; \mathrm{H}, 8.08$; S, 11.68. Found: C, $56.84 ; \mathrm{H}$, 7.86; S, 11.84\%).

Acknowledgements

We thank Mr Atsushi Ohnishi (Daicel Co., Ltd.) for his assistance in carrying out the HPLC analysis of thiolanes and thianes and Mr Yasuaki Hisamoto (Kyoto University) for measuring HRMS spectra.

References

1 For reviews, see: M. C. Willis, J. Chem. Soc., Perkin Trans. 1, 1999, 1765; D. M. Hodgson, A. R. Gibbs and G. P. Lee, Tetrahedron, 1996, 52, 14361; T.-L. Ho, Symmetry: A Basis for Synthesis Design, Wiley, New York, 1995; R. S. Ward, Chem. Soc. Rev., 1990, 19, 1.
2 For an overview, see: Enzyme Catalysis in Organic Synthesis, ed. K. Drauz and H. Waldmann, VCH, Weinheim, 1995, vol. 1, pp. 165-363. For examples on 1,2- and 1,3-diols, see: S. Matsumura, Y. Kawai, Y. Takahashi and K. Toshima, Biotechnol. Lett., 1994, 16, 485; P. C. B. Page, A. J. Carnell and M. J. McKenzie, Synlett, 1998, 774.

3 For some recent works on 1,2-diols, see: E. Vedejs, O. Daugulis and S. T. Diver, J. Org. Chem., 1996, 61, 430; N. Maezaki, M. Soejima, A. Sakamoto, I. Sakamoto, Y. Matsumori, T. Tanaka, T. Ishida, Y. In and C. Iwata, Tetrahedron: Asymmetry, 1996, 7, 29; N. Maezaki, A. Sakamoto, M. Soejima, I. Sakamoto, L. Y. Xia, T. Tanaka, H. Ohishi, K. Sakaguchi and C. Iwata, Tetrahedron: Asymmetry, 1996, 7, 2787; T. Kawabata, M. Nagato, K. Takasu and K. Fuji, J. Am. Chem. Soc., 1997, 119, 3169; M. Kinugasa, T. Harada and A. Oku, J. Am. Chem. Soc., 1997, 119, 9067; H. Fujioka, Y. Nagatomi, H. Kitagawa and Y. Kita, J. Am. Chem. Soc., 1997, 119, 12016; S. Yamada and H. Katsumata, Chem. Lett., 1998, 995; T. Oriyama, K. Imai, T. Hosoya and T. Sano, Tetrahedron Lett., 1998, 39, 397; T. Oriyama, K. Imai, T. Sano and T. Hosoya, Tetrahedron Lett., 1998, 39, 3529. For some recent works on 1,3diols, see: K. Prasad, R. L. Underwood and O. Repic, J. Org. Chem., 1996, 61, 384; A. P. Davis, Angew. Chem., Int. Ed. Engl., 1997, 36, 591. For some recent works on 1,4 -diols, see: K. Ishihara, M. Kubota and H. Yamamoto, Synlett, 1994, 611. For some recent works on conversion of epoxides to allylic alcohols, see: S. E. de Sousa, P. O'Brien and H. C. Steffens, Tetrahedron Lett., 1999, 40, 8423; M. Asami, M. Ogawa and S. Inoue, Tetrahedron Lett., 1999, 40, 1563; M. Asami, T. Suga, K. Honda and S. Inoue, Tetrahedron Lett., 1997, 38, 6425; J. P. Tierney, A. Alexakis and P. Mangeney, Tetrahedron: Asymmetry, 1997, 8, 1019; M. J. Södergren and P. G. Andersson, J. Am. Chem. Soc., 1998, 120, 10760. For some recent works on ring-opening of epoxides with nucleophiles, see: T. Iida, N. Yamamoto, H. Sasai and M. Shibasaki, J. Am. Chem. Soc., 1997, 119, 4783; W. A. Nugent, J. Am. Chem. Soc., 1998, 120, 7139; A. Alexakis, E. Vrancken and P. Mangeney, Synlett, 1998, 1165. For deprotonation and rearrangement of epoxides, see: D. M. Hodgson and G. P. Lee, Chem. Commun., 1996, 1015; D. M. Hodgson, G. P. Lee, R. E. Marriott, A. J. Thompson, R. Wisedale and J. Witherington, J. Chem. Soc., Perkin Trans. 1, 1998, 2151; D. M. Hodgson and L. A. Robinson, Chem. Commun., 1999, 309.

4 D. N. Harpp, J. G. Gleason and J. P. Snyder, J. Am. Chem. Soc., 1968, 90, 4181; D. N. Harpp and J. G. Gleason, J. Am. Chem. Soc., 1971, 93, 2437.
5 For examples, see: L. Breau and T. Durst, Tetrahedron: Asymmetry, 1991, 2, 367; L. Breau, W. W. Ogilvier and T. Durst, Tetrahedron Lett., 1990, 31, 35; S. Otten, R. Fröhlich and G. Haufe, Tetrahedron: Asymmetry, 1998, 9, 189; K. Julienne, P. Metzner, V. Henryon and A. Greiner, J. Org. Chem., 1998, 63, 4532; E. Hauptman, R. Shapiro and W. Marshall, Organometallics, 1998, 17, 4976. For recent applications of chiral cyclic sulfides in the asymmetric synthesis of epoxides, see: V. K. Aggarwal, J. G. Ford, S. Fonquerna, H. Adams, R. V. H. Jones and R. Fieldhouse, J. Am. Chem. Soc., 1998, 120, 8328 and references cited therein.
6 Chiral aminophosphines were already reported: A. Alexakis, S. Mutti and P. Mangeney, J. Org. Chem., 1992, 57, 1224

7 These are probably due to the increasing nucleophilicity and the reducing $\mathrm{O}-\mathrm{P}-\mathrm{N}$ angle of the alkoxydiazaphosphane $\left[\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)\right.$ $\left(\mathrm{NPr}^{\mathrm{i}}\right)_{2} \mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)$] generated in situ by replacement of the diethylamino group of 7 with $i \operatorname{PrO}$. The exchange of an amino group was already reported in ref. 6.

8 A six-membered disulfide $\mathbf{2}$ is not a complete meso-compound but a compound with averaged symmetry $\left(C_{2 \mathrm{v}}\right)$ similar to cis-1,2dimethylcyclohexane, although the planar representation of $\mathbf{2}$ implies that it has a meso-configuration. Thus, $\mathbf{2}$ is a racemic mixture of two enantiomeric conformers which are interconvertible by a rapid ring flip. See: E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994, p. 703.

9 R. M. Dodson and V. C. Nelson, J. Org. Chem., 1968, 33, 3966.
10 K. Achiwa, Y. Morimoto and Y. Terao, Chem. Pharm. Bull., 1987,

35, 2266. In this paper the 30%-enriched $(S, S)-5 a$ showed $[a]_{D}^{23}$ +26. 29 (c 1.94, CHCl_{3}), while 20%-enriched (R, R)-5a showed $[\alpha]_{\mathrm{D}}^{23}-17.27\left(c 3.52, \mathrm{CHCl}_{3}\right)$.
11 The desymmetrization of $\mathbf{2 b}$ and the seven-membered disulfides, 3a and 3b, is assumed to be in the same sense by analogy.
12 The relationship of the rate constants represents $k_{\mathrm{d}}=2.1\left(k_{\mathrm{b}}+k_{\mathrm{c}}\right)$ ($k_{\mathrm{a}} \approx 0$) by calculation based on the enantiomeric excess (36% ee).
13 L. Schötte, Ark. Kemi., 1956, 9, 413.
14 R. Imwinkelvied, M. Schiess and S. Seebach, Org. Synth., 1987, 65, 230.

